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Alpng with the familiar exact solutions of the Navier-Stokes equations describing the 

flow of an incompressible fluid (the solutions of Hamef. Couette, and Poiseuille), there 
is a fairiy broadclass of exact solutions corresponding to jet flows of a viscous fluid. 
The existence of such a solution was first pointed out by Landau [l]. His solution can be 
interpreted as the efflux of a jet of finite impulse into infinite space filled with a viscous 
fluid at rest. Iatseev 131 obtained a class of solutions of the Navier-Stokes equations for 
the flaw of an incompressible fluid from which the Landau and Squire solutions follow 
as special cases. Wu [43 generalized Iatseev’s rest&s for the case of an electrically con- 

ductive fluid in a magnetic field. Exact solutions for a compressible heat-conducting 
gas have been obtained recently. These solutions can be viewed as generalizations of 
Hamel’s solution. Williams [5] obtained the exact solution for axisymmetric source-type 
flow under the assumption that the coefficients of viscosity and heat conduction depend 
on the temperature as (~jO.5~ Byrkin [6] obtained an exact solution analogous to Williams’ 
solution for two-dimen~on~l fIow with arbitrary dependence of the viscosity and hear 
conductivity of the gas on temperature. 

We shall obtain a class of exact solutions of the Navier-Stokes equations for two-dimen- 
sional flows of a viscous heat-conducting gas. The solutions of Byrkin and WilIiams are 
special cases of this class. Our sofution coincides with that of Iatseev in the case of an 

incompressible fluid of constant viscosity. 

1, The Navier-Stokes equations describing steady flows of a viscous compressible heat- 

conducting perfect gas are of the form 

V(pv)=6 

p=pRT 

where Q is the HamiItonian. A = t”; v, pI p, T, F, k, R are the velocity vectoK, 
pressure, density, temperature, coefficient of viscosity, coefficient of heat conduction, 

and universal gas constant, respectively, We assume that p and k are teIated to tempe- 

rature by an expression of the form p, k .- (CC)“, where ra is an arbitrary number. 

3, Let us consider axisymmetric flows. We shall make use of spherical coordinates 
(r, 0, v) and assume that vy, z 0, 8 (..“) / 8cp z 0 in all equations. We shall attempt to 

find the solution of Eqs. (1.1) in the form 
PPF = @ fB)r-fi* t;- = cp (8)7-a f p = mft3)r-Y 

we =: y (0) r-3 
) Q = ljl(0)P, k = x (0)r- 

T = T (0)r+~ 
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Existence of a solution of the form (2.1) requires that 

y=2an,~=1+2an 

(cc and n are arbitrary numbers) 

(2.2) 

Substituting relations (2.1) into our original equations (1.1) written out in spherical 
coordinates, we obtain the following system of ordinary differential equations : 

(f3 - 2)@ = Y’ + yctge 

mcp" + [m' + m&g0 - Y]cp' + [aa, + %(a + i)(i +a + 2an)m - 4(a + i)mlg,+ 

+ [% (1 + CL + 2an) - a - 3]m$ + P/9(1 + a 4 2an)mctgO - (a + l)m’ - (a + 

+ 3m)ctg 91 Yy-t (1 + a + kn)rc (@ I q))r = 0 

4/8m+11+ [4/8m' + 4/3mctgB - Yu]*’ + [(a - I)@ - 2/3m’ctg0 - 2mctgz0+2/3m?sin-2t) + 

+ (cc + l)(a - 2 + 2an)m]$ + P/S + '/~(a - 6an)lw' i- P/s -I- 2/s4m’q - 
- R (# I cp)‘a - R (cr> I cp)r’ = 0 (2.3) 

z&’ + I [x’ + xctg8 - c,Y]z’ + I [4a2(1 + n)x - 2ax -I- (@ / cp)‘$R / Z -I- 2acp CD - 

- (1 + cc + 2un)cDR / Ill; + m(cp')2 + 4/3m($')2 - 2(a + l)m+$ + 4/3@ + 1 - ct@)X 

Xrnv$ + Q&(a + 1)2m(p2 + f(a + Ifa + 4/~ctg2elm~ -I- "/3(a - If m~tg8 = 0 

Here and below the primes denote derivatives with respect to 13. 

TO Eqs. (2.3) we must add another relation which follows directly from (;! 11, 

@,Jq = urlll, f2.4) 

The resulting system of equations (2.3).(2.4) together with the appropriate boundary 
conditions is a closed system which enables us to find the unknown functions cp, $, r, @, 

UT. We interpret the above two-parameter family of exact solutions as the solution of the 

jet flow problem. We shall distinguish three cases of jet flow : an ~bo~ded jet, a semi- 
bounded jet, and a bounded jet. In the first case the range of the solution is 0 < 0 < n, 
in the second case it is Our 4 Cl < x, and in the third case - flu, < 0 g Ozo, where e,,, is 
the vertex half-angle of a circular cone. The boundary conditions in the case of a sub- 
merged jet can be written, for example, as 

e = 0, 11, = cp’ Z cp’ = $ = 0 (2.5) 

0 = n, lJJ=cp=o, ‘F = 7* 

where +c* is the prescribed static temperature of the ambient gas. fn solving (2. l), (2.3)- 

-(2.5) numerically we also specify the values of 1; (O), 9 (0), Q (0) , choosing them in 
such a way as to ensure fulfilment of conditions (2.5) for 0 = rc. The singularities for 
e = 0 and 8 = rc in Eqs. (2.3), (2.4) can be avoided by expressing the required func- 
tions as series in 6 , 

* = dle + 1/,A,e3 + . . . . Y = c,e + v,c,es+... 
; = g, (0) + vz&e2+. . . , CD = 9, (0) + lt2D,e2+.. . (2.6) 
z = T (0) + ‘l&@f..., m = m (0) + wf,e2+... 

The relations 
k = k (0) + =hK2~2i-... 

Cl = (0 - 2) / 24, (0) At = @ - 2) / 2~ (0) 

together with (2.6) now enable us to move away from the singular point 0 = 0 to within 
O(B) and to proceed with our calculations. A similar device can be used to show that 
boundary conditions (2.5) for S E n can be shifted to a i3 close to n to within the same 
error. 
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The results of Williams [5J are a special case of the above class of solutions. We can 
obtain Williams’ solution by setting a = 1, n = *:‘Z in the solution of (2.3) (2.4) ; then 
J3 = 2, and the only solution which satisfies the conditions at the axis and walls of the 
nozzle is a source-type relation, i. e. UT = $ G 0. 

If we set .a = 1, n = 0, m = const, d, = cp, then the solution of (2. l), (2.3)-(2. 5) 
coincides with that of Iatseev [3J. 

8, Now let us consider two-dimensional flows. Making use of relations (2.1). we sub- 

stitute them into the initial Navier-Stokes equations (1.1) written out in cylindrical co- 
ordinates (r, 9, z), where v, z 0, a(...) / 8~ = 0. This yields relations (2.2) and the fol- 
lowing system of-ordinary differential equations : 

(p - I)@ = Y’ 

mcp” + [m’ - Ylcp’ + [a@ + %(2a + i)(i + a + 2cU2)m - 2(cc + f)m]g, -k 

+ f2/3(1 -5 a + 2a4 - (a + 3)lm$ + lUr - (a + Ifm’l I@+ (1 + a + Srn)R(@ / (r)T == 0 

4f3m$f -I- f413m’ - yl$’ + [(a - 1) @ + (a 4 I)@ - 1 + kz)ml$ + [‘/3 - l:‘3 X 
X (1 + 6n)almcp + ?/3 [2m’ + am]cp - R (Qkp)‘~ - .R (@//cp)a’ = 0 (.3. 1) 

I%$ + f lx’ - c,Ylz’ + Ipilx”(1 + n)x + Sa@cp - (1 + CL + 2an)@R i I + 

+ (Q / cp)‘qR / 11~ i- m(cp’Y - 2(a + i)nt’qq’+ % (n. + 2)mgnl + 

+4/~ (CC + a + 1) mcp? + (a -j- l)+@ = 0 

Q/cp = u/q 

The solution of (2. l), (3.1) together with the appropriate boundary conditions can be 
regarded as the exact solution of the problem of a two-dimensional (submerged, semi- 
bounded, or bounded) jet. No solutions of this type exist in the case of an incompressible 
fluid, except for Hamel’s solution and its generalizations, which describe source- or sink- 
type flow and can be obtained from the solution of (2.1),(3.1) by setting 

a = 0, n= 0, I?t = const, d, = ‘p 

Numerical solution of (2. l), (3.1) is essentially equivalent to numerical SOIutiOn of 
(2. l), (2.3) (2.4) in all three of the above cases of jet flow. Examples are given by 
Byrkin [6J, who solved these systems for a = 0, arbitrary n, and j3 = 1. The solution of 

the problem of a bounded jet for these parameter values is a source-type solution, 

i.e. Ur = * = 0. 
In conclusion we note the obvious connection between the parameters a and J3 (or a 

and 12) on the one hand, and the integral characteristics of the jet on the other. The Con- 

dition of finite jet imp&e is a f J3 = 2 in the axisymmetric case and CL -b fi = 1 in 
the two-dimensional case ; the condition of finite mass discharge rate is fl = :! in the 
axisymmetric case and J3 = 1 in the two-dimensional case. It is clear that the latter 
conditions are fulfilled in source-type flows only. 

Tine approach described in f4J makes it possible, in principle, to generalize our ClaSS 
of exact solutions for the flow of a viscous compressible electrically conductive gas in 
a magnetic field, 
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The flow of a Maxwellian fluid in a plane channel whose boundaries move at given velo- 
cities is considered. The problem need not have a continuous solution in the event of 
mass flow through the channel boundaries. The factors occasioning a discontinuous solu- 

tion are discussed. The three-constant Oldroyd model is used as an example to analyze 
the possible discontinuity structure of the initial two-constant model. 

1. Let us assume that the flow of a viscoelastic fluid depends on the single coordinate 
z and that the behavior of the fluid is described by the rheological equations of Oldroyd’s 

“contravariant” model Cl1 pij = _ psij + Tij, Tij + hiTTij =2qeii 

Tij’= aTii / dt + vkTij, k - v~,~T,~ - vj,kTik 
(1.1) 

Let the velocity vector be of the form V = (u,, 0, v&, let the tensor Tij have the non- 

zero components T,,, TX:, Ttz, and let the longitudinal pressure gradient and external 
body forces equal zero. In the steady-flow case which we shall consider the continuity 
equation implies that v,, = const; the equations of motion and relations (1.1) yield the 

following system of equations closed with respect to 0%’ TX?, T,,, T,,: 

dv, dT,, dT,Z dv, 
-=- 

pvO dr dz ) voyjy-T,, dz 

T,, + hl (vo q - 2T (Ev,\__O 
xz dz / ’ 

dT,,=O T,, + hvo dz 

(1.2) 

(1.3) 

We are required to find the solution of system (1.2), (1.3) in the domain 1 z I< a (a 
plane channel) which satisfies the following boundary conditions. 

We are given the longitudinal velocity uX (--a) = u1 and v,(a) = u2 (i.e. we are 
dealing with Couette-type flow). In addition, we are given the stresses T,, and T zz at 
the line of entry of the stream into the channel. For example, in the case of injection 


